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SUMMARY

De Finetti's "Fundamental Theorem of Probability" is reformulated as a
computable linear programming problem. The theorem is substantially
extended, Ind shown to have fundamental implications for the theory and
practice of statistics. It supports an operational meaning for the partial
assertion of prevision via asserted bounds. We extend the theorem to
apply to general quantities, to allow bounds and orderings on previsions
as input to the programming problem, and to yield bounds, even on
conditional previsions, as output. Consequences include the ultimate
strengthening of any probability inequality based on linear constraints,
such as the Bienayme-Chebyshev inequality and an inequality related to
Kolmogorov's inequality, but based only on the judgement of a sequence
of quantities as exchangeable. Included in the wide variety of potential
applications are the safety assessment of complex engineering systems,
the analysis of agricultural production statistics, and a synthesis of
subjective judgments in macroeconomic forecasting. In our discussion.
prevision is explicitly recognized as a completion of the notion of
logical assertion, introduced by Frege.
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LOGICAL ASSERTION.
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1. INTRODUCTION

WITHOUT elaborating on the choice of name for his theorem, de Finetti (1970,
3.10.1) announced as the "Fundamental Theorem of Probability" a derivation of
bounds on the numerical assessment of the prevision of an event, bounds that are
required by and insure its coherence with coherent previsions already asserted
for N other evl.nts. The logic behind the theorem had already been presented in
his Paris lectures, "Foresight: Its Logical Laws, Its Subjective Sources" (1937,
Ch. 1), and the importance of the result had been recognized in the analysis of
finite additivity in his paper "On the Axiomatization of Probability" (1949, 5.9).
In the 1 ..er paper, the result is expressed in terms that identity the limitations
under which a coherent prevision function specified over a linear space of events
can be extended to a coherent function over a larger linear space. The analysis
there is presented at such a level of mathematical abstraction that it has arawn
scant attention. The technical prelude to the Fundamental Theorem in de Finetti
(1970) is prolonged over at !east 70 pages of introductory concepts and
examples. Particularly important is the discussion of logical dependence,
logical independence, and logical semi-dependence among events.

If a poll were taken of members of statistics societies throughout the
world, we doubt that even 1 percent would say they considered "the fundamental
theorem of probability" to be the result so designated by de Finetti. Even among
statisticians who would call themselves "Bayesian", we doubt that the figure
would reach 5 percent. In small groups of statisticians to whom we have
addressed the question of identifying the fundamental theorem of probability,
responses have ranged from "the Law of Large NumbersTM, to "the Central Limit
Theorem", to "the Law of the Iterated Logarithm", to "There is no fundamental
theorem of probability." A bold Bayesian would sometimes suggest Bayes'
Theorem, or even de Finetti's theorem on the representation of exchangeable
distributions.

The present paper is meant to elucidate the Fundamental Theorem in a
constructive computable form, to extend it in useful ways, and to reveal its
fundamental character by showing its comprehensive applicability and the
resolution it provides for substantive issues in probability and statistics. After
preliminary definitions and concepts (Section 2), we characterize the theorem as
a linear programming problem (Section 3), first suggested by Bruno and Gill°
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(1980) and extended by Rahman (1987). The Fundamental Theorem in linear
programming form provides a computational procedure whereby any kriowledge
you actively assert via your previsions for N specific quantities enters as input
into the program in terms of linear restrictions. The maximum and minimum of
an objective function, computed as output from the prop-am, serve as bounds on
the prevision you may assert for a further specific quantity if it is to cohere
with the N previsions you have already asserted as input. These are the
narrowest such bounds. They guarantee the coherence of the full set of N+1
asserted previsions if the first N are themselves coherent.

At .er a careful discussion, we interpret the Fundamental Theorem of
Probability to support the process of asserting bounds on previsions as an
operationally meaningful representation of uncertain knowledge. With this
interpretation, the theorem provides a standpoint for evaluating the
controversial discussions or interval probabilities that have continued
throughout this century in works such as Keynes (1921), Borel (1924), Koopman
(1940), Reichenbach (1949), Good (1950), Smith (1961), de Finetti and Savage
(1362), Scott (1964), Fishburn (1965.i985), Dempster (1967), Suppes
(1974,1981), Shafer (1976), and Lelmer (1986). (The list is not exhaustive.)
We expand the Fundamental Theorem to allow assertions of bounds
on incompletely assessed previsions as the primary input specifications of
uncertain knowledge. Even more generally, assertions of mere orderings of
prevision and other linear inequalities are shown to be meaningful inputs, with
numerical implications computable within the linear programming framework.

Finally, we extend the theorem beyond the domain of events to a
fundamental theorem of prevision for general quantities (Section 4). Any
prevision inequality holding under linear equality or inequality constraints
receives its strongest possible statement as a consequence of our general
result. One corollary strengthens and completes the Bienayme-Chebyshev
inequality in the context of uncertainty about bounded discrete measurements.
Another gives an inequality related to Kolmogorov's inequality, but involving
quantities judged as exchangeable. A final extension has implications for
cohering assertions of conditional previsions. The extension to conditional
prevision requires a nonlinear programming computation, for which we provide a
simple algorithm. The output bounds on conditional previsions have direct
applicability in operational-subjective statistical methods.
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Our results are illustrated by small-scale computations (Section 5).
From the immense scope of potential practical applications, we suggest examples
in engineering, agronomy, and macroeconomic forecasting. Concluding comments
(Section 6) dwell on the logical category of prevision as an assertion, in the
sense introduced by Frege (1879). In this light, we recognize the Fundamental
Theorem of Prevision as a generalization of the deductive closure result of
Hilbert and Ackermann (1938, I. S9.).

2. PRELIMINARIES

Most of this section is a concise summary of concepts that are
developed by de Finetti with extensive examples in chapters 2 and 3 of his
treatise (1970). Readers who are not familiar with the de Finetti approach are
asked to pay special attention to the definitions. Familiar sounding terms are
often defined with a different meaning and syntax than in the measure-theoretic
characterization of probability. For example, an event in the usual formulation
is a set; whereas in our terminology, an event is a quantity, a number.

A quantity, X, is the numerical outcome of a particular operationally
defined measurement. Hence, X is a well defined number, although its numerical
value may be unknown at the time X is contemplated. The set of all numbers
that are possible results of performing the operation is called the realm of the

quantity, denoted by R(X). Typically, it has a finite number of elements, called
the size of the realm. The analysis in this paper is confined to the realistic
case of a realm with finite size. A quantity, E. whose realm is 2.(E) = {OM is
called an event. If E is an event, then g 1" (1-E) is also an event. Definitional
restrictions on events specify logical relations among them. For example, N
events are said to be incompatible if their definitions imply that their sum
cannot exceed 1. Similarly, N events are exhaustive if their sum cannot be less
than I. N events are said to constitute a partition if they are both incompatible
and exhaustive, that is, if their sum necessarily equAls 1. The individual events
in this case are called constituents of the partition.

Any N events (N z 1) generate a partition with 5(N) constituents. 5(N)
is called the size of the partition generated by El.....EN. The constituents of

this partition are those 5(N) summands in the multiplicztive expansion cif the
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expression 1 = 1T1 ,N (Ei*E1) that are events. This is to say, their realms contain

both (and only) the numbers 0 and I. A typical summand in this expansion is a
product of N events, such as E ir2g3E4-.-rN_IEN. There are, of course, 2N summands

of this form. But some of them may not be events, since some of the summands
necessarily equal zero if there are logical restrictions among the multiplicand
events that generate the partition. For a simple example, suppose N=2, and
E2 E 1- El. Then neither EiE2 nor rir2 are events, since they both necessarily
equal 0. But both E1E2 and E1E2 are events. Thus, 5(2) = 2, rather than 4. If
every summand in the Product expansion riiiN (Ej+E1) is an event, then 5(N) = 2N.

Otherwise 5(N) < 2N. Throughout this paper, we will denote the constituents of
the partition generated by the events E1,...,EN using the symbols C1,...,Cs(N).

Geometrically, the 5(N) constituents of the partition generated by N
events can be represented by points in N-space, specifically, by 5(N) designated
vertices among the 2N vertices of the N-dimensional unit cube. If there are no
logical restrictions among the generating events, then 5(P1)=2N, and every vertex
of the N-dimensional cube represents a constituent of the partition. In this case
we say the events are completely logically independent. But it there are any
logical restrictions among E1,...,EN, then some of the vertices must be removed

from the N-dimensional cube in order to represent only the constituents of the
partition generated by the N events. In such a case we say that the operational
definitions of the events entail some degree of logical dependence. Figures 2.1
and 2.2 exhibit two possible configurations of logical dependence among three
events. In Figure 2.1, the two events El and E2 are completely logically
independent, while E3 is their logical conjunction. It is defined functionally as
the product E3 E EiE2. In Figure 2.2, the three events F1, F2, and F3 are
incompatible. Yet none of them is defined functionally in terms of the other
two. De Finetti referred to such e nts as logically semidependent.

8
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Figure 2.1. Logically Dependent
Events. The two events E1 and E2
are completely logically independent,
whereas event E3 is their logical
conjunction: E3 a E,E2.

0

Figure 2.2. Logically Semidependent
Events. The trree events F1, F2, and

F3 are incompatible. Nevertheless,
none of them is a logical function
of the other two.

These concepts can be generalized to vectors. A vector of quantities,
XN a (X1,...,Xf.4)T, is a vector whose components are quantities. The realm of

such a vector, denoted by 3Z(XN) C RN, is the set of vectors that represent

possible outcome values obtained by performing the operations defining all the
component quantities. The component quantities of XN are said to be completely

logically independent if R(XN) equals the cartesian product of the realms of its

components. Otherwise the quantities are said to entail some degree of logical
dependence. A vector of quantities generates a partition whose constituents are

the events of the form (XN = xN) where xN is in 371,(XN). Thus, the size 5(N) of the

partition generated by N quantities equals the size of the realm of their vector.
[Parentheses around a mathematical relation, such as (XN = xN), should be taken

to defi-1 an event equal to 1 if the relation holds, and equal to 0 otherwise.]

Your prevision for a vector of quantities V. = (X1,...,XN)T is the vector

of numbers P(X) E (P(X I), ..- , P(XN))1. you specify, with the understanding that you

are thereby asserting your indifference to engaging any transaction that would
yield you the net (sum of products) sT[X-P(X)1 pounds sterling, where
s =(si,...,sN)T is any vector of scale constants. Your indifference must apply to

-9
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vectors s in every direction. It may be qualified only that the components of s
must be sufficiently small that the net yield of any relevant transaction does
not transgress the limited region over which your utilities are approximately
linear. For example, you may stipulate that your assertion of indifference
pertains only if s is scaled so that the maximum gain or loss you can incur from
the yield sT[X -P(X)] is no greater than 10 pounds. (For detailed discussion of
this feature. see de Finetti, 1970, 3.2.) If any component of X is an event, then
the corresponding component of your prevision vector is caked your proPability
for that event.

In asserting your prevision P(X), you are avowing your willingness to
buy and your willingness to sell a claim to sTX pounds in exchange for payment
of sTP(X) pounds. Tnis is an operational implication of the stipulation that the
vector s in the yield expression sT[X-P(X)] may have any direction. Having
asserted your own P(X), then for any vector pi s P(X), you would presumably
also be willing to pay sTpi pounds for a claim to sTX pounds where every
component of s is positive. For this transaction would yield you at least as
much as paying sTP(X) pounds for a claim to sTX pounds. Similarly, for any
vector p2 2 P(X), you would presumably be willing to sell a claim to sTX pounds
in return for payment of srp2 pound,.

Let us tarry a moment to highlight the technical aspect of defining
prevision as an assertion you make regarding the value of X. The realm of X
presumably delineates all the various values of its component measurements
that anyone can validly contemplate as possible; whereas your prevision P(X)
represents your operationally defined judgment of the value of X on the basis of
such contemplation. (Someone else may assert a different value as his/her P(X).
Neither of you are estimating a "true" or "correct" value of X, but rather

asserting your own valuation o' X.) This distinction between R(X) and P(X)
parallels that introduced by Frege (1879) in mathematical logic. Within the
confines of two-valued logic, he introduced notation to distinguish the content
of a declarative sentence, which may be true or false, from a proposition, which
is an assertion by someone that the sentence is true. The rules of two-valued
logic govern the self-consistency of several propositions, requiring that you do
not assert both the truth of a sentence. A, and the trut.i of its negation, A. The
extension of these rules to the logic of uncertainty is motivated by the desirable
property that your assertions of prevision be coherent.

1 0
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Your prevision for a vector of quantities, P(X), is said to be conerent
as long as you do not assert by it your indifference to some transaction that
would surely yield you a loss, no matter what the outcome value of X may be

among the possibilities in 2,(X). Algebraically, the coherency of your specified
P(X) requires that there exists no vector s with sufficiently small components

for which, for some e > 0, sl[x-P(X)] < -e < 0 for every vector x e R(X). This
specification of this requirement leads to the algebraic characterization of
coherent prevision as a linear functional over the space of linear functions of X.
By a standard supporting-hyperplane argument, the set of all coherent vector
previsions assessable for the vector of quantities X is identical to the convex

hull of 12.(X) in N-dimensional space. The coherent extendibility of your asserted
linear functional, P, to larger spaces is the subject of the fundamental theorem
of prevision, to be discussed.

Your conditional prevision for a quantity X conditional on E, denoted
P(X E), is defined as the number you specify with the understanding that you are
thereby asserting your indifference to engaging any transaction that would yield
you the net gain of s[XE P(X I E)E] pounds sterling. Such a transaction is
called a contingent transaction for X, contingent on E. For the yield from the
transaction (gain or loss) will differ from 0 only if the event E in fact equals 1.
A conditional prevision assertion P(X I E) coheres with assertions of P(XE) and
P(E) if and only if P(XE) = P(X I E)P(E). This definition of conditional prevision
makes no reference to any assertion of prevision you might make in the future.
Your conditional prevision represents an operationally defined judgment you
make now about the value of X and E, based on your current state of uncertain
knowledge. (See Goldstein 1985 for discussion and developments based on this
distinction.)

We conclude these preliminaries with the observation that any vector
of events. EN. can be written as a linear function of the vector of constituents

of the partition the events generate, Coo, via the equation

EN : RN.s(0)Cs(N) .

Here RN 5(,,j) is the [NxS(N)J matrix whose columns are the vector elements of the

realm 2.(EN). Since every entry of RN.s(N) equals either 0 or 1, each column

vector of Aro00 associates'a specific constituent of the partition with some

vertex of the N-dimensional unit cube. The equality of E and RC merely states



the identity of each event Ei with the sum or specific identifiable constituents

of the partition generated by E1,....EN. These constituents are identified by

expanding the right side of the equation, Ei = EiITTi,iN(Eifti)(ji)], and then

recognizing the proscribed summands in the resulting expression that necessarily
equal 0 due to logical restrictions among the events generating the partition.
For example, the vector of three events whose realm is displayed in Figure 2.i
can be expressed as E3 - R3.4C4:

fCil
IC2

I C3

1c4J

where Cj is the event that the vector E3 equals column j 01 the matrix R3,4.

Notice that the columns of R3,4 are also the vector elements of the realm 14(E3),
represented by bold dots in Figure 2.1. More general:1J, a similar equation
characterizes any vector of quantities, XN, as

XN = R(XN) Cs(N)

where R(XN) is the matrix whose columns are the elements of the realm R(XN),

and C$(N) is the vector of constituent events (XN=xN), one for each possible

observation vector xN in the realm It(XN).

fEll
1E21

1E3J

=

1-1 0

10 0

10 0

0

1

0

11

11

1-/

Finally, notice that although the numerical values of the quantities
Xi, ...,XN and of the constituents C1, ... ,C5(N) may well be unknown to you, you

cal be certain that the sum of the constituents equals 1. That is, ZCs(N) = 1,

since C11...,C5(N) constitute a partition, by construction. [We use the notation

Ey for the sum of the components of a vector v. We will also have recourse to
denote by 1N the N-dimensional column vector with every component equal to 1.]



3. THE FUNDAMENTAL THEOREM OF PROBABILITY: INITIAL EXTENSIONS

The operational-subjective ;.:;eory of probability allows you to assert,
as your prevision (probabilities) for a vector of events, any vector of numbers
you p!ease, subject only to the restriction that your assertion be coherent. The
coherency restriction will then define your prevision operator as a linear
functional on the space of linear functions of the event vector. Notice that your
prevision operator is not defined for all functions on the basis of some
underlying measure. Rather, your prevision for a vector of quantities becomes
defined only when you actively assert your willingness to engage the
transactions specified in the definition. Coherency requires that when you
assert this willingness, you concomitantly assert your willingness to engage in
specified transactions involving linear combinations of the quantities, whose net
yields would be identical to the yields from transactions you have
expressly asserted to be acceptable. Now suppose you coherently specify y( r

probabilities for a vector of N events, EN. De Finetti's fundamental theorem of

probability characterizes the numerical restrictions on your assessment of
prevision for any further event, EN, 1, that are required by and insure the

coherency of your overall prevision for the vector of events
EN,1 = (E1, ... ,EN,EN,I)T. The first theorem we present is a reformulation of the

fundamental theorem as a linear programming problem. It appears first to h..2-e
been suggested in such a form by Bruno and Gilio (1980), while the subsequent
extensions in this section were developed and discussed in the thesis of Rahman
(1987).

Fundamental Theorem of Probability. Let EN be a vector of events for

which you have specified your prevision vector, P(EN) = pN ; and let EN,1 be any

other event. Depending on the logical relations among the events Ei,...,EN.ENI,

they generate a partition of size S(N+1) s 2. Denote by Cs(N,I) the vector

that comprises the constitutents of this partition. By construction, the vector

EN1 1. RN1.5(N oCs(N, 1), for the appropriate matrix RNI.s(NI). Denote the first

N rows of RN,1.S(N+1) by RN,S (N+ I) . and the (N+ 1)st row by rN,1. Then, for the

coherency of an extended prevision assertion for all components of EN,I.

P(EN, 1) = (pNTP(EN,1))1., it is both necessary and sufficient that the numerical

value of you. .,(EN,i) lie within the interval [IN., .uN1]. where the values of IN.;
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and uN,1 are determined by solving the following two linear programming

problems;

Find those S(N+1)-titples qs(N,I) = (q1,q2.....qs(N.0)T that yield the extretrn,

IN,1 E minimum (rN,1 qs(N 0) and uN,1 7--- maximum (rN,1 qs(N.0) ,

both subject to the (N+1) linear equality constraints

RN,s(N I) qs(N I) z PN and Eqs(N,i) = 1 ,

along with the S(N+1) non-negativity restrictions that each component of qs(N,1)

be non-negative. The feasible region for these programming problems is empty
if and only if your original assertion of P(EN) = pN is incoherent,

Proof. An assertion P(EN1) = pN, is coherent if and only if the vector

pN,i lies within the convex hull of the set 2,(EN,1). Now the event vector EN, I is

a linear transformation of the constituent vector C$(N,i) it generates. The

transformation takes vectors in S(N+1)-dimensional space into (N+1)-dimensional
space by the transforming matrix RN.i.s(N, 0, viz., EN,1 = 14Ni,schoCs(No

Under this transformation, the convex hull of 2.(EN,I) is the image of R(Cs(N0).

Thus, the vector PN,1 ices within the convex hull of R(EN,I) if and only if it can

be obtained by the same linear tranformation of some vector within the convex

hull of the realm R(Cs(N,I)). Since the components of Cs(N,i) constitute a

partition, the. convex hull of R(Cs(N.0) is the simplex of vectors

(1S(N I) = (q1....As(f4.1))1. whose components are nonnegative and sum to 1. The

assertion P(EN,i) = pN,1 is an extension of the assertion P(EN) = pN if and only it

the first N components of the vector pN1 are identical to the components of

PN = RN,S(N 1)415(N 1) for some qualifying vector qs(Ni). Thus, satisfaction of

the linear programming formulation is both necessary and sufficient for an

assertion P(ENi) = pN, to be a coherent extension of the assertion P(EN) = pN.

The same logic underlies the final statement in the theorem, that the original
assertion P(EN) = pN is incoherent if and only if the feasible region of the

specified programming problems is empty. V
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Page I I



Let us make a few simple observations before a deeper discussion.

At one extreme, if EN,1 happens to be a linear function of E1,...,EN, then

P(EN,l) is determined exactly, on account of the linearity property of coherent

prevision. In this case 1N,1 = uN,i = P(EN,i). At the other extreme; if EN,1 happens

to be completely logically independent of Ei,...,EN , that is, if 5(11+1) = 25(N),

that is, if EN,1 and tN,1 are both compatible with every constit lent of the

partition generated by E1,...,EN , then 1N,1= 0 and uN,l = 1. In this case, the

boundaries on the coherent assertion of P(EN,l), as an extension of the assertion

P(EN) = pN , are not affected at all by the specific components of the vector pN.

(A coherent prevision assessment for any event, of course, must !ie within the
interval [0,1].)

Between these two extremes lie all the intermediate possibilities of
logical dependence conceivable among E1,...,EN,i . The tightness of the bound on

P(EN, 1) depends on the numerical values of P(Ei),..., and P(EN) as well as on the

logical relations among Ei,...,EN,I. For example, notice that in Figure 2.1 if
P(E1) = P(E2) = .5, then the bounds on P(E3) are 0 and .5. For any value of P(E3)
outside these bounds, the vector P(E3) = (.5,.5,P(E3)) would lie outside the

convex hull of the realm R(E3), outlined in bold. Whereas, if P(E1) = P(E2) = .7,
then the bounds on P(E3) are .4 and .7. Within the convex hull of the four

possible outcome vectors, the convex hull of R(E3), all vectors that project
orthogonally onto the point (pi,p2) = [13(E1),P(E2)] lie within the bounds specified
by the two linear programming problems.

The major practical difference between de Finetti's characterization of
coherent prevision as a linear functional and the more common measure-theoretic
axiomatization of probability can be seen by comparing this fundamental theorem
with a corresponding axiom of the usual approu,..n. The measure-theoretic
concept supposes that a unique probabi.ity measure is defined on every
"elementary event", that is, a set corresponding to a constituent of our partition
generated from E1,...,EN,I. Then it is axiomatic that the probability of any union

of these disjoint events [note the measure-theoretic and set-theoretic language]
equals the sum of the probabilities of the elementary events in the union.
Bayesian statistical theorists who have attempted to use this mathematical
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formulation with a subjective interpretation are justly criticized by the
objecting practitioner who questions "How can I possibly assess my probability
for each of those elementary events?" For 5(N.1) can be much larger than N.1,
even as large as 2N*1. The characterization of coherent prevision as a linear
functional allows you, as the practitioner, to assess your prevision for as many
or as few evcrits as you feel able and interested. Notice that any vector qs(N,i)

satisfying the linear programming constraints would be coherent, and would
cohere with the assertion P(EN) = ..;, if it were asserted as a prevision of the

constitutent vector C$(N,l). The usefulness of-the fundamental theorem of

probability lies in the tact that the logical relations among the events of
interest to you can be exploited in aiding your assessr 2.nt of P(EN,l), without

the necessity that you identify your preN.ision for every constituent of the

partition generated by E1,...,EN,I.

3.1. Discussion: Bounds on Prevision at the Base of the Assessment Process

After you have coherently asserted your prevision P(EN) = N. the

requirement of the fundamental theorem that IN,1 s P(EN, l) s uN,i has two

practical implications. One is cautionary. The other is behavioural. As a
guideline, the requirement cautions that if you now undertake to specify your
P(EN,l), it had better lie within the interval EIN.I.uwil, or else you will have

expressed an incoherent opinion. If you desire to be coherent, a reassessment of
P(Ei),...,P(EN) would be in order if you are satisfied with your assertion of

P(EN,l) outside of the interval [IN,i,uN,1]. Indeed, this is the language in which

the fundamental theorem has been stated. But in addition, the theorem already
has a behavioural consequence for you, even if you never assert a prevision value
for EN,l. The theorem implies that the coherency of your prevision operator

along with tne logical relation of EN,l to EN and your already specified assertion

of P(EN), together, amount to your avowed willingness to pay any amount up to

(sIN.1) for a claim to the unknown value (sEN,i). [As noted in tne preliminaries,

s is qualified to be a small or moderate amount, say 10 pounds sterling.] For a
combination of transactions involving only components of EN can be arranged

that will surely not return you more than (sEN,i) and for which you have

already asserted your willingness to pay (sIN,1). Similarly, you are avowedly

willing to offer for sale a claim to (sEN.i) in return for at least (suN.i).
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This statement of behavioural implications for de Finetti's Fundamental
Theorem of Probability is related operationally to Learner's (1986) suggestion
that a "bid-ask spread" be considered the basic meaningful unit for expressing
one's uncertainty about a quantity within the operational-subjective framework.
Although we do not subscribe to the entire argument presented in Learner's
paper, his operational meaning for asserting a probability interval is compelling.
A much discussed criticism of the operational-subjective theory of probability
hinges on the requirement that you specify a single price at which you are both
willing to "buy" and willing to "sell" a quantity, in order that the theory have any

content. The behavioural interpretation of the fundamental theorem softens this
requirement. It is operationally meaningful to make a partial assertion of your
prevision for a quantity X that your P(X) lies within the interval [pi,pul.

Formally, you thereby avow your willingness to engage any transaction that
would yield you the net gain of stEX pi] + sufpu-X], so long as si and su are

non-negative scalars small enough that your net gain or loss cannot be too large.
Requiring coherency of a partial assertion of prevision, that you neither assert a
willingness to accept a sure loss, nor a willingness to forego a sure gain,
implies minimally that a coherent prevision interval Epi,pul must satisfy the

inequalities: min R(X) s pi s pus max R(X).

In higher dimensions, this characterization of a partial assertion as the
assertion of a prevision interval expands not merely to a prevision hyperinterval,
but to a prevision polytope, perhaps highly irregular in shape. This follows from
the fact that when you assert your willingness to engage in several individual
transactions, coherence requires your willingness also to engage them in linear
combinations (subject to the qualification that the scale of the net gain or loss
not be too large). Moreover, a partial assertion regarding an individual quantity
may be redundant in the context of other partial assertions you make. These
ideas are presented most simply by an example.

Suppose that Ei and E2 are incompatible events, and that event E3 is
defined as their sum: E3 E E, + E2. Thus, the convex hull of R(E3) is the plane
triangle connecting the points (0,0,0), (1,0, 1), and (0,1, 1). This hull is
depicted in Figure 3.1, projected onto the 2-dimensional space containing R(E2).
Now, suppose further that you make the three partial assertions of prevision,
P(Ei) e [.25,.5), P(E2) e (.2,.31, and P(E3) e [.5,.91. The dark polygon within the
convex hull contains all the vectors in 2-dimensional space that satisfy the
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restrictions specified by your several partial assertions. For any price vector
(pi,p2) outside this polygon, you have effectively asserted your willingness to
engage some transactions that involve buying or selling Ei for pi and / or buying
or selling E2 for p2. But you have not yet made any assertion of your position on
exchanges involving prices represented by any vector within the polygon.

E

1.0

.9
.255P(E ),I 5

IL,h.5,p(E3),.9

OW
.5

.2 1 P (E2) s 3

E
0 .1 .25 .5 .9 1 0 1

Figure 3.1. A partially asserted prevision polytope. The events E1 and E2 are

incompatible, and E3 E El + E2. The convex hull of R.(E3), projected onto the

2-dimensional space containing 2,(E2), is the heavily outlined half unit-square.
The dark polygon within this convex hull is the partially asserted prevision
polytope specified by the three partial assertions of prevision, P(E1) E [.25,.5],
P(E2) e [ .2 . .31 . and P(E3) E [.5,.91.

There are two special features to note in this exarrple. First is that
the asserted upper bound, P(E3) s .9, is redundant in light of the other two

assertions of P(E1) s .5 and P(E2) s .3. For the willingness the latter signify,
to engage in any transaction yielding siu(.5-Ei) + s2u(.3-E2) as long as siu and

52u are non-negative, implies a willingness to engage in any transaction yielding

53u (.8 -E1-E2) = 53u(.8-E3), signif led by the asserticr, P(E3) s .8. The second

feature to note is that the assertion P(E3) z .5 signifies a willingness to engage
a transaction yielding s31(E3-.5) = s31(E1 *E2-.5) = s31(E1 -.27) + s31(E2- .23),

for example, even though .27 exceeds the lower partial assertion value of P(E1),
and .23 exceeds the lower partial assertion value of P(E2). Thus, the vector
(.27, .23) lies outside the polygon of partially asserted prevision.
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611111,

The fundamental theorem of probability supports and even motivates
the point of view that your intervals of partial assertion of prevision for
individual quantities has a definite operational meaning in the representation of
uncertain knowledge. The coherency requirement that you neither willingly
accent sure losses nor willingly forego sure gains characterizes a partially
asserted prevision polytope, the set of vectors that satisfy the inequalities or
all your partial assertions, as a convex polytope lying within the convex hull of
the realm of the quantity vector. You can be said to have asserted your
prevision for a quantity, as defined in the preliminaries of this paper, only in
the extreme case that your asserted prevision interval for that quantity consists
of a single number. The fundamental theorem actually requires proponents of
the operational-subjective formulation of uncertain knowledge to admit this
viewpoint. For whatever precise prevision assertions you make for whatever
quantities, the theorem snows us how to iaentify another quantity for wrycn
your avowed assertions are equivalent to a partial assertion.

The terminology partial assertion of prevision for the statement
P(X) e [pi , pul is expressly meant to connote that, conceivably, you can complete

an assertion of your prevision for this quantity by a process of further
introspection and sharper decision. Would you rather own a claim to X pounds or
a claim to (pi + pu)/2 pounds? Once you decide, you will have strengthened your

partial assertion or prevision eitner to P(X) e [(pi +pu)/2 , Pu] or to

P(X) e[pi, (pi +pu)/21, depending on the decision. However, there are many

useful ways you might decide to spend your time. So there can be no requirement
that you assert a resolution of any particular value question such as this one.
Several contemporary proponents of "interval probabilities" argue that
probabilities are best considered to be irreducible intervals. Subjectivist
proponents of this view say that "when I assert P(E) f [PI,Pu], I mean that I

would pay up to pi for a claim to E, and I would sell a claim to E for pu or more.

But at prices between pi and pu, I will neither buy nor sell a claim to E." We ao

not subscribe to this viewpoint. Without further discussion here, let us merely
state that such a position neglects the linearity of utility presumed in tne
qualification that the scale be small for the net yields from any relevant
transactions.
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3.2. Extensions of the Theorem of ProbsOday

The fundamental theorem of probability can be extended to describe the
implications of coherency for your partial assertion of probability intervals. The
theorem, in the form stated above, makes only limited use of the rich
possibilities of the linear programming structure. The constraint Zqs(N.1) = 1,

along with the S(N+1) restrictions that each component of qs(N.1) be

non-negative, together specify the feasible region of vectors qs(N.1) as the

convex hull of the realm R(Cs(N.0). The matrix RNI.s(NI) transforms these

vectors into (N+1)-dimensional space. Thus, in effect, these [S(N+1)+11
restrictions on qs(N.1) define a convex polytope in (N+1)-dimensional space.

Each of the further N exact linear constraints specified by the equation P(EN)

PN = RN,S(N1)(IS(Ni) reduces by 1 the dimension of the transformed feasible

region. When all constraints are met, the coherent assertions P(EN.1) that are

extensions of the assertion P(EN) = pN are restricted to lie along a bounded

one-dimensional line segment. Its endpoints are defined by the extrema of the
designated linear programming problems.

We say this is merely limited use" of the linear programming setup,
since you need not go so far as to assert fully your prevision vector P(EN) in

order to compute numerical bounds for P(EN.l) with a linear programming

algorithm. A computable solution of bounds for coherent assertions regarding
EN,i can still be achieved on the basis of partial assertions, IN s P(EN) s uN .

Although these assertions may not reduce the dimension of your prevision
polytope for EN,i, they could reduce its volume considerably. This is the tack

we follow in stating our first extension of the fundamental theorem. (Its proof
is contained informally in the preceding discussion.)

The Fundomental Theorem of Pro:Willey EYtension I. Let EN be any

vector of events for which you make the partial assertions IN s P(EN) s uN. Aricl

let EN.' be any other event. The logical relations among components of EN.1

specify that EN./ = RN. / (N. oCs(N. 1). (Again, let RN.EN1) denote the matrix

composed of the first N rows of RN.I.s0,1.1), and let ri denote the ith row.) The

conerency of your explicit assertions regarding the vector EN.1 entails that you
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also avow the partial assertion IN,1 s P(EN,d s uN,1 , where IN,1 and u are
determined by the solutions to the following two linear programming problems:

Find those S(N*0-tuples qs(N.0 = (q1,....qs(w&T that yield the extrema
IN,1 =---- minimum (r qs(N. 0) and u" E maximum (r" qs(N. 0)

both subject to the linear constraints that

RN,S(N 1) qS(N I) 2 IN .

RN,s(N 1) (1S(N 1) s UN , and

E qs(Ne i) = 1,
along with tile non-negativity restrictions on the components of qs(N,0.

Moreover, the coherency of your several assertions about EN+1 defines your

prevision polytope for EN, 1 as the feasible region in these linear programming

problems, transformed into (N +1)- dimensional space by the matrix RN.1.5(N 1)

Thus, for each component event Ei of EN, 1, you avow, in effect, the partial

assertion lip s P(E1) s uis, where liw and uiM are the extreme values attainable

by the function riqs04,0 within the feasible region. A

This form of the theorem exhibits the interconnections among all your
partial assertions of prevision that are required by coherency. Your prevision
for each of the N+ I events is constrained in the same fashion, by a bounding
interval. The vector of your previsions for all of the N +1 events must lie within
a convex polytope, the transformed feasible region of the programming problems.
Any further decisive introspection motivating you to narrow one of your asserted
intervals, Ili*, uil, could have an effect on the implied bounds for any or all
other quantities, narrowing the associated intervals. For your explicit narrowing
of the interval Eli* ,u1*1 (for example, asserting P(E1) precisely) would amount

to a more restrictive specification of the feasible region of vectors qs(N,0 that
are allowed by the programming problems.

Note that the implied intervals Eli*, u1s.) are "marginal" rather than
"joint" intervals, in the sense that, because they are merely one-dimensional
projections of the partial prevision polytope, their cartesian-product
hyperinterval need not consist of points that would be coherent if asserted as
prevision vectors. They are necessary but not jointly sufficient as Pounds for
coherent prevision vectors. The smaller partial prevision polytope is the set. of
all the coherent candidate prevision vectors.
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A second useful extension of the fundamental theorem is readily
apparent. In the linear programming context, a mere assertion of orderings
among your previsions for several quantities or for linear combinations of them
is sufficient to generate computable bounds that express your uncertain
knowledge , egarding any quantity. For example, you might assert that your
P(E1) a P(E2). meaning that you avow a willingness to excnange a claim to sE2
pounds in return for a claim to sE1 pounds (presuming r is not large). With
similar operational meaning, you might assert that your P(E3)+P(E4) 2 P(E5), or
even that your P(E6) +2P(E7) a P(E8). Moreover, any assertion of conditional
prevision can be expressed as a linear constraint as well. A coherent assertion
that your P(Eil E2) = pi.2, for example, is equivalent to the assertion that
P(E1E2) = p1.2P(E2), which is to say, P(E1E2) p1.2P(E2) = 0. This is a linear
restriction on your prevision for the events E2 and E3 s E 1 E2. Similarly, the
partial assertion P(Ei1E2) e la,b1 is representable by linear restrictions:
aP(E2)-P(EIE2) s 0, and bP(E2)-P(EIE2) a 0. Each such statement is readily
translated into linear constraints allowable in the linear programming
framework: R..a---N,S(N1)41S(N1) 1 b. for a suitably defined row vector a and an

appropriate number b. (Without loss of generality, we will henceforth express
all inequality assertions in such a less than or equal to form.) Let us merely
state this second extension of the fundamental theorem in a summary fashion.

Fundamental Theorem of Probability Extension 2. The fundamental
theorem of probability extends further to allow meaningful partial assertions of
prevision in the form AK.N REN) s bK as input to the linear programming

problems, and to imply computable bounds on coherent prevision for any linear
combination of constituents, P(r Cs(N.0). 6

This extension of the fundamental theorem unifies the numerical
representation of subjective probability with ideas of merely ordinal probability,
as advanced in several works of Shackle (1949, 1955). According to de Finetti
(1965). ideas behind such an extension were already underlying works in
educational testing by Coombs, Milholland, and Womer (1956), Willey (1960),
Chernoff (196'. 1962), and Dell'Era (1963).

we can summarize the position to which the fundamental theorem of
probability has led us. The requirement of coherency provides that whatever
knowledge you assert about a vector of events, no matter how meagre or how
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detailed the knowledge may be, delineates a convex polytope that represents
your prevision to the extent to which you have specified it. We need not
presume that the volume of the polytope is reduced to zero by any precise
specification of your prevision. Yet there is positive operational meaning to the
knowledge you do specify.

4 . THE FLICAMENTAL THEOREM CF PREVISION

Since events are merely quantities whose realm is (OM, it should not
be surprising that the fundamental theorem of probability, and each of the
extensions we have presented above, depicts a special case of a theorem
applicable to prevision for general quantities. What may be surprising is the
breadth of important results in statistical theory that are particular instances
of the general result. We will state and prove the fundamental theorem of
prevision in two parts. The first part is a comprehensive generalization of
results we have already discussed. The second part reveals the bounds implied
for coherent conditional prevision. After an intermediate discussion, we will
dwell on two important corollaries.

In what follows, we presume XN = (X 1, ... ,XN)T to be a quantity vector,

with a finite discrete realm R(XN) having 5(N) members. We noted at the end of

our preliminaries that XN can be represented in terms of the linear equation

XN 1.' RN,S(N) CS(N)

where RN,s(N) = R(XN) is the (N x 5(N)) matrix whose columns are the vector

elements of the realm 12,(XN), and Cs(N) is the (S(N)x 1) vector of constituent

events of the form (XN= xN) , one for each element vector xN in the realm R(XN) .

Individual rows of RN,s(N) are denoted r 1, ... ,rN. Using the generalization of

prevision to a prevision interval (operationally defined by the assertion of a
bid-ask spread) and the generalization to the assertion of any preference
representable by aTP(XN) s b, we can represent any knowl:,'ge you would like to

as:;ert about components of XN vi2 linear relations of the form AKN P(XN) s bK .

Ba' A upon the characterization of coherent assertions as the foregoing of any
sure lOsses and the accepting of all sure gains, we can now state simply and
general ly:
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The Funo'amental Theorem of Prevision. Part /. Let XN be any vector

of quantities for which you have partially asserted your prevision via the
specifications AKNP(XN) 1 bk . (The number K may be less than, equal to, or

greater than N.) Then coherency implies that for any component, XI, you assert,

in effect, P(Xi) f tli,1111, where the numerical values of li and ui are calculated

as the extreme values of the objective functions in the linear programming
problems:

Find the two 5(N)-tuples qs(N) = (q1,...,qs(OT that characterize

11 E minimum rigs(N) and ui ,-= maximum ri qs(N

both subject to the linear constraints

AK,N RN, 5(N) qs(N) 1 bp( , and

ECIEN1) = I
along with the non-negativity restrictions on the components of qs(,4)

The common feasible region for these programming problems, translated into
N-dimensional space via the matrix RN,s(N), constitutes your coherent prevision

polytope for ;. This feasible region is non-empty if and only if your original

assertion AK.NP(XN) 1 bK is coherent.

Proof of Part / . This part of the theorem follows immediately from
the second extension of the fundamental theorem of probability discussed in the
previous section. For any general quantity can be represented as a linear
combination of events: X = Z xi (X =xi), where the summation extends over all

the possible observations xi in the realm R.(X). A linear programming algorithm

will necessarily yield finite extreme value solutions to these problems as long
as the feasible region is not empty, since the feasible region is bounded. V

It is worth mentioning explicitly the reminder that the assertion of
each individual P(Xi) within its associated interval ( li,u11 is necessary but not

sufficient for tho coi..,rency of a prevision vector P(XN). Tne necessary and

sufficient condition for the coherence of the prevision vector P(XN) is that it lie
within the feasible region for these programming problems, translated into
N-dimensional space via the matrix RN.s(N).
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Remember that any assertion of conditional prevision, such as the
partial assertion P(X (E) E fa,b1, can be incorporated into the form of input to the
programming problems specified in this theorem. Due to the coherency require-
ment that P(XE) = P(X E)P(E), it is equivalent to the two assertions,
aP(E) P(XE) s 0 and bP(E) P(XE) a 0. However, bounds on coherent conditional
previsions cannot be computed as output from the theorem as stated, since
cohering P(X E) is not a linear function of P(XE) and P(E). indeed, we know, at
least when you assert P(E) > 0, that P(X ( E) must equal the quotient P(XE)/P(E).
We can use this fact to derive a sufficient condition for the coherence of a
conditional prevision as an extension of assertions AKN P(XN) s bK.

For clarity in stating Part 11 of the fundamental theorem of prevision,
we will refer to a further assertion of conditional prevision beyond the
assertions AK.N P(XN) s bK as a statement involving P(XN.1(XN.2), where XN,1 is
a quantity and XN,2 is an event, denoted distinctly from the components of XN.
You should be aware, however, that there is nothing special about these
quantities. They could well both be components of XN about which you have

explicitly made partial assertions of your prevision.
The Fundamental Theorem of Prevision, Part If. Let XN be any vector

of quantities for which y.pu have partially asserted your prevision via the
specification, AKNP(XN) s bK , as in Part 1. Now let XN,i and XN,2 be any other

quantity and any event, respectively, and let XN,3 be defined as Their product,

XN,3 = XN,i XN,2 . Supposing R(XN.3) has S(N+3) members, XN,3 is representable
via the equation XN,3 = RN.3.s(N.3)Cs(N,,,3) Let Risiss(N.3) denote the matrix

composed of the first N rows of RN,3.s(N,3), and denote the final three rows of
RN,3.s(N3) by Nei, rN,2 , and rN,3, respectively. Anti further assertion of

conditional prevision P(XN.1 XN,2) coheres with AKNP(XN) s bK if it lies within
the interval [IN.IIN.2 suN,IIN.21. where the numerical values 1" It4.2 and uN.IIN.2
are calculated as extreme values of the objective functions in the nonlinear
programming problems:

Find those S(N+3)-tuples, qs(N.3) = (qi,...,qs(N.3))T, that characterize

IN,i IN2 = minimum ErN4,3 qs (N.3) /rN,2 qs (,03 )) , and

uN4,11N4,2 = maximum (rist,.3qs (N4,3) /fisi4.2 qs 0444

both subject to the linear constraints

AK,N RN,S(N3) (IS (N+3) s bK and
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qs (N.3) = i

along with the non-negativity restrictions on the components of qs(4.3).

Supposing that the feasible region is not empty, nonlinear-programming
algorithms will yield finite extreme value solutions to these problems if and
only if the coherence of P(XN,2) with AkN P(XN) 5 bK requires that P(XN,2) > 0.

Proof of Part II. This result hinges on the coherency requirement that
for any quantity X and event E, the assertion P(X I E) must satisfy the restriction
that P(XE) = P(X I E)P(E). Thus, the coherency of an assertion P(41,11 XN,2) with

the assertions AK.NP(XN) s bK requires that there be a vector q satisfying the
linear restrictions specified in the theorem, for which P(XN,2) = rw,2 q and

P(XN3) = rN .3 q, and for which P(XN,i I XN,2) r12 q = rN3 q. Thus, the relevance

of the non-linear objective function rN,3q/rN,2q to the coherence of the further

assertion P(XN,1 I XN,2) is established as long as rN.2q is bounded away from O.

However, no bound can be computed by these means for the quotient
r143qs(N,3)/rN2qs(N3) as long as there is a vector q satisfying the restrictions,

for which rN,2 q = 0. This condition would allow an assertion of P(XN,2) = f.; to

cohere with AkiN P(XN) s bK. On the other hand, if all feasible vectors q entail
that rN,2 q > 0, the quotient cN,3q/cN,2q is necessarily bounded, for the feasible
set of vectors q is closed and bounded. V

Figure 4.1 displays the logic of the argument. The numerical value of
P(XN,i I XN,2) coherent with the assertions of P(XN,2) and P(XN.IXN,2) equals the

slope of the vector (P(XN,2),P(XN,3)) whenever a unique slope is defined. Suppose

that the convex hull of the realm R(XN,2,XN,3) is the dark bordered triangle with
vertices (0,0),(1,1), and (1,5). If the coherency of [P(XN,2),P(XN,3)] with the

assertion AKNP(XN) s bK requires that the vector be bound within the inscribed
quadrilateral, for example, then it would also restrict a cohering assertion of
conditional prevision P(XN.1 I XN.2) to lie betwen the minimum and maximum

slopes of lines through the origin that intersect the quadrilateral. If the
assertion (P(XN,2),P(XN,3)) = (0,0) would cohere with AK,NP(XN) s bK , then

every line through the origin would intersect the region of cohering assertions
(P(XN.2),P(XN,3)), and thus there would be no bound on a cohering assertion of
P(XN,I I XN.2) without strengthening the definition of coherency. Further

discussion of this eventuality is beyond the scope of this paper.
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Figure 4.1. Coherence of conditional prevision. Bold dots represent vectors in

2,(XN+2,XN.3), where XN+3 a XN,IXN+2. The bold triangle is the boundary of their

convex hull. The inscribed quadrilateral represents assertions of P(XN2,XN3)

presumed to cohere with the assertions AK ,NP(XN) s bk . Then the slopes denoted

IN.IIN,2 and uN,104,2 are the minimum and maximum values of P(XN,IIXN.2) that

would cohere with this pz. cial assertion of P(XN).

It is worth noting that Suppes (1981, p. 24) decried the non-existence
of a result such as our FTP Part II as a 'serious difficulty" for a numerical
representation of uncertain E mleuge.

A simple algorithm. The nonlinear programming problem of FTP Part 11
can be solved computationally by a one-dimensional monotonic search among
solutions to related linear programming problems, as follows. To maximize the
ratio y/x over points (x,y) of a closed polygon in the open right-half plane,
define the linear function zx(x,y) = y Xx , parameterized by X . The equation

zx(x,y) = c represents a straight line of slope X and the line passes through

the origin (0,0) only if c = 0 . For given X , we maximize the function zx(x,y)

over allowable (x,y), and write max zx(x,y) = zX(xX, yx) = cX . (The line

zx(x,y) = cX now touches the allowable polygon only on its boundary, including
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the point (xx, yx). ) If a search is conducted and a value ?. is found for which

ca = 0 , then

g / Xx = a.

This slope is maximal since the line passes through the origin and touches the
polygon only on its boundary. (For the minimization problem, use the same

algorithm, with maximization replaced by minimization, throughout.)

Let us conclude this section by noticing that the strongest possible
forms of two important inequalities are corollary to the Fundamental Theorem of
Prevision.

Corollary 1. Completion of the 131enayme-Cliebysliev Inequality. Let X

be any quantity with finite discrete realm 3Z(X) = {xi, x2,...,xs). Correspondingly,

X2 is 3 quantity with realm R(X2) 7 - {y I y =x2, and xeR(X)} = {x12, x22, ... ,xs2).

Each event of the form (X =xi) is equivalent to the associated event (X2= xi2);

and all events of the form (X=xi), where xi E 31,(X), together constitute a

partition. Denoting the vector of these constituents by Cs E RX = X 1), ... ,(X = X5)1T,

we can write 1 x 1 ,.. r X1 X2 Xs 1
CS = R2 ,5 CS .

t x2.1 I. x12 x22 ... x52.)

Suppose you assert precise numerical values for P(X) and P(X2). Your variance
for X is defined as V(X) 3 P[X P(X)]2 = P(X2)- [P(X)12, the latter equality being
an implication of the coherency of your prevision. Now for any e > 0, define the
event EE as the event that X differs from your P(X) by at least e,

EE a (I X P(X) 12 e). Finally, let rE denote that row ve..tor with components 0

or 1 for which EE = rE Cs. Then for any E >0, coherency requires that your P(EE)

lie within the interval bounded by the solutions to the following two linear
programming problems:

Find the vectors qs that minimize .end maximize rEqs

subject to the restrictions that
r P(X) 1 = f xi x2 xs 1 qs
1. p(x2 )J l x12 x22 ... xs2J

that Eqs = 1 , and that each component of the vector qs be non-negative. A
L.1
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The familiar Bienagme-Chebyshev inequality states the weaker
conclusion that under the conditions specified, P(EE) s V(X)/2. The major use

of that inequality has been in proving various forms of the weak law of large
numbers. For in practice, the traditional statement of the upper bound is
notoriously large, often too large to be useful. The inequality stated above as

corollary to the fundamental theorem of prevision actually strengthens the
inequality as proved by Chebyshev (1867) to the most extreme statement that
can be made in any particular application. A computational example showing
such an improvement appears in Section 5. Moreover, our corollary completes
the celebrated inequality by specifying a lower bound as well as an upper bound
on your prevision for the event ( I X -P(X) I z E) in any given instance.

As mentioned, the Bienaym-Chebyshev inequality has found its widest
use in theoretical studies of the weak law of large numbers. The weak law
concerns bounds on your probability that the average of several quantities
deviates from your prevision for the average by more than any speci;ied amount:
P( I >7N-P(XN)I z E). Obviously, the Bienayme-Chebyshev inequality is relevant if
you assert your P(XN) and P[07021. The strong law of large numbers concerns

bounds on the less restrictive event that at least one member of a sequence of
averages so deviates: P(Maxo sksK I >7M+k P(XM+k) I z E) for specified values of

M and K. The fundamental theorem of prevision provides as corollary a
necessary and sufficient bound for coherent provisions of such extreme events.
We state this corollary in the context of any finite sequence of discrete
quantities that you regard as exchangeable, the paradigmatic context for
statistical inference. Our corollary differs from the usual Kolmogorov
inequality, first, in assuming exchangeability instead of independence and,

secondly, by involving successive averages directly, rather than sums of
quant it les.

Let us denote by XN the vector of quantities (X1,...,XN)r, having a

common realm :R.(X0= 2,(X)= (x1,...,x5). (So S denotes tne size of this common

realm of the components.) Similarly, X2N denotes the corresponding vector of

the squares of these quantities, and (XiXi)N denotes the vector of the N(N- 1)/2

product quantities XIXJ, where 1 s i < j s N. Finally, we denote by Cs(N) the

vector of constituents of the partition composed of the events of the form
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(XN= xN), one for each element xN in the realm R(XN). Using this notation, we

write

1 XN 1 1 R(XN) 1

I x2N I = I
R(x2N) I cs(N)

1(xixi)Ni IR((XIXJ)N)J

Each submatr ix R() is composed of columns that are the appropriate vector
members of the realm of the quantity vector shown within the parentheses.
Notice that S(N) may be any positive integer between S and 5N, depending on the
logical relations embedded in the definitions of the components of XN.

Corollary 2. &finds on Probabilities of Extreme Sequences. Let
Xi,...,XN be a sequence of quantities which you regard as exchangeable. Suppose

you assert three precise numbers for your P(X1) = P(Xi), for all i (1 s i s N), your

131,X12) = P(Xj2) (1 s i s N), and your P(X1X2) = P(XiXi)(1 s i < j s N). Fc,- each

positive integer M and each non- negative integer K, and for any e >0, define the
event Em,K, E -2 (M-ax 0 sk s K I )<I1+k P(XM+k) 12 E), where XT denotes the

arithmetic average of the quantities Xi,...,XT. Your presumed assertion of

exchangeability requires that your P(XM +k) = P(X1). Finally, let rm,K,e be the

indicator row vector for which rm,K,CS(N)= Em,K,E. Then coherency requires

that your P(EM,K,E) lie within the interval bounded by the extreme values

of rm,K.Eqs(N), subject to the appropriate linear restrictions generated from

your assertions,
P(XN) = P(Xi) 1 N = R(XN)q$(N) ,

P(X2N) ::: p(x 12)1N ::: R(x2ofis(N) and

PRX 'X i)N1 = P(X i X2)1 N (N-0/2 = R((X i X j )N) qs(N)

along with Zqs(N) =1 and all components of qs(N) non-negative. Moreover, your

regarding the quantities Xi as exchangeable places additional linear requirements

on the vector qs(N). Any components of qs(N) must be equal if the corresponding

columns of the realm matrix R(XN) are permutations of one another. These

exchangeability restrictions can be expressed in the form Mqs(N) = 0, where eacn

row of the matrix M contains one 1, one -1, and 0 in the remaining S(N)-2
positions. A
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Although only corollary to our fundamental theorem of prevision, this
is a very general and strong statement of its own. It specifies the strictest
bounds on your prevision (probability) for events of the form Em,K,E that are

implied by your avowed assessment of N quantities as exchangeable and your
prevision assertions as stated in the theorem. (Kolmogorov's inequality and the
usual statement of the strong law of large numbers presuppose your stronger
assertion of independence regarding X i,...,XN. Such an assertion would be

representable by a further specification of polynomial restrictions on the
components of qsoso that we will not describe here in detail.) Within the

minimalist conception of mathematics subscribed to by de Finetti, the laws of
large numbers are well specified properties of prevision for events of the form
EM,K,E, where M and K have specific finite values. Detailed discussion appears

in several sections of de Finetti (1970: 1,6.8; II, 7.5). Our Corollary 2 to the
fundamental theorem of prevision states precisely the sharpest bounds on a
prevision P(Em,K,e) that are necessary and sufficient for its coherence with the

asserted prevision.-., mentioned. Thus, the corollary identifies the asserted
status of any sequence of quantities vis-a-vis the law of large numbers
condition, P(MaxokIK Fm+k -P(>7m+k)l2 e) 1 8 for specified values of M and K,

that is required by its coherency with the assertion of exchangeability regarding
component quantities. More standard specifications of the status of exchangeable
sequences in terms of limit theorems are compiled in the monograph of Taylor,
Doffer, and Patterson (1985). It is somewhat ironic that such a simple
characterization of coherent probabilities relevant to the laws of large numbers
is achieved within the operational-subjective formulation of probability via the
fundamental theorem of prevision. For the laws of large numbers, so central to
objectivist theories of probability such as the frequency theory and the
propensity theory, are only a curiosity in the subjectivist theory, which centers
upon practical questions of your knowledge about particular finite sequences.

In the next section, we present small computational examples and
suggest realistic applications of our arguments.

5. COMPUT T IONS AND APPLICATIONS

To begin, we illustrate our irnprovement on the Bienayme-Chebyshev
inequality, which pertains to a single quantity. We shall then extend the context
to several quantities regarded as exchangeable, in order to illustrate the
computable bounds on coherent probabilities of extreme sequences.
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Example I. Suppose that X is a quantity with realm .(X) = [1,2,3,4,5).
Thus, we can write i X 1 .7 r1 23 4 5 c5 A r= "2,5 5

1X2J 1 1 4 9 16 25 i
Where C5 iS the column vector of events [(X =1),(X =2),(X=3),(X=4).(X=5)1T.

The convex hull of the realm 24(X,X2)9 is the dark bordered polygonal region
depicted in Figure 5.1. To begin this example, suppose you assert the previsions
P(X) = 2.2 and P(X2) = 7, or equivalently, your V(X) = P(X2)-[P(X)]2 = 2.16. The
point [P(X),P(X2)] = [2.2 7.0] should be identifiable in the figure. The figure
also shows that the assertion of P(X2) within the interval [5.0,8.2] is necessary
and sufficient for its coherence with the assertion P(X) = 2.2. In the course of
this extended example, we will also consider alternative assertions, P(X2) = 6.0
and P(X2) = 7.6.

x2

I
25

16

9.

4,

0 1 2 22 3 4 5

Figure 5.1. Completion of Bienaume-Chmhyshev inequality. The convex hull of

R(X,X2) is divided into two regions by a diagonal line. The lower part, including
the points connected by the dividing line, is the convex hull of the subset of
possible observations for which I X -2.21< E, provided e satisfies the inequality
1.8 < s 2.8 .

Let us first study an event that is easy to describe geometrically: the
event that X differs from 2.2, your P(X), by at least 2.8 units. Using the
notation of Corollary 1, we write E2.8 = (1 X-2.21 z 2.8) = (0 0 0 0 1) Cy. What

X



does the coherency of your prevision require of your P(E2.8)? Since E2.8 is a
function of X, you can imagine a third axis for this quant:ty, rising
perpendicularly up out of the plane of Figure 5.1. Visualizing the 3-dimensional
figure, we se the value E2.8 = 1 if X has the value 5. But for the other four
possible values of X, E2,8 = 0. Now the convex hull depicted in the original plane

figure can be viewed as the projection of the convex hull of R(X,X2, E2.8) onto
the space of (X,X2). The lower half polygon whose vertices are the four points
(1,1,0), (2,4,0), (3,9,0), and (4,16,0) constitutes the bottom face of the
3-dimensional hull. There are four other faces on this hull. Each is defined by a

triangle connecting one edge of this bottom face with the point (5,25,1).

Since any coherent prevision point for the vector of quantities
(X, X2,E2.8) must lie within the hull in three dimensions, it should be evident
why the linear programming solution that minimizes P(E2.8) subject to the
relevant restrictions yields a lower bound of 0 (corresponding to the primal
solution vector q5 = (.6,0,0,.4,0)). For the associated prevision vector
P(X,X2,E2.8) = (2,7.0,0) lies on the bottom face of the hull. The maximization
problem subject to the same constraints yields an upper bound of .2
(corresponding to the primal solution vector q5 = (.4,.4,0,0,.2)). The associated
prevision vector P(X,X2,E2.8) = (2,7.0,.2) is the highest point in the hull that
projects onto (2.2,7.0) [in the space of (X, X2)1. This upper bound on
P( I X -2.21 2 2.8) is sharper than the Bienayme-Chebyshev bound in this case:
V(X)/E2 = 2.16/(2.8)2 =-: .276. Notice that Figure 5.1 would be unchanged for
illustrating the logic of coherent prevision for any other event EE for which e

lies within the half-open interval (1.8,2.8). Events such as

ELI:n=1 (1X-P(X)1 2 1.81) and E2.8 E ( I X P(X) 12 2.8) are identically
equivalent to the event (X=5).

Figure 5.1 can also be used to aid ones intuition in several more of the
computational results presented below. Considering a coherent prevision for the
event E1.2 = (IX -2.2Ik 1.2), restricted only by the assertions P(X) = 2.2 and
P(X2) = 7, one recognizes that the triangle connecting the points (1,1,1), (4,16,1),
and (5,25,1) constitutes the upper face of the convex hull of Ri(X, X2, E 1.2), while
the line connecting (2,4,0) with (3,9,0) constitutes a lower edge. It should
then be evident that the upper bound for conc. ant P(Ei.2) is 1, while the lower
bound will exceed 0. The precise lower bound is .6, as listed with tne upper aria
lower bounds for various values of e and V(X) in Table 5.1, below. As shown for
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1.2, if you assert P(X) = 2.2 and P(X2) = 6, coherency of prevision will bound
our assertion of P(E1.2) within an interval [I, u1 that lies strictly within (0, 1).
he relevant upper bound computed from the inequality of Bienayme-Chebyshev

pc following our computed interval in each case.

b

Reading down the columns of Table 5.1, notice that both the upper
ound and the lower bound decrease (weakly) as c increases. But reading across

a row, say when e = 1.8, notice that there is not a monotonic pattern in the
upper bound on P(E1.8) with increasing values of P(X2). This latter result may
appear counter-intuitive to readers unduly influenced by their experience with
the Bienayme-Chebyshev inequality. If one makes the appropriate adjustments in
visualizing Figure 5.1 to illustrate E1.8, one will see the interesting reason why
the upper bound for coherent P(E1.8) is smaller when P(X2) = 7.6 than it is when
P(X2) = 7.0.

Table 5.1 Bounds* on prevision for Chebyshev's event, P(EE),

necessary and sufficient for its coherence with various
specified values of P(X) and P(X2), followed by the
Bienayme-Chebyshev upper bound, headed th3_c .

P(X,X2) (2.2,6.0) (2.2,7.0) (2.2 , 7.6)

E coherent bounds uB.,c coherent bounds uB_c coherent bounds us_c

0.8 1 .267,1.0 )

L2 1 .267, .5 1

1.8 [ .025, .2331
2.8 [0.0 , .1171

1.813 [ .6 ,1.0] 3.375 [.8 ,

.806 I .6 , 1.01 1.5 [.8 ,

.358 [ .15, .41 .667 [.225.

.148 [0.0 , .2] .276 [.15 ,

1.0 1 4.313
1.0 1 1.917
.351 .852
.251 .352

*The bounds presented are accurate to the nearest one-thousandth.

Etarnple _?. Expanding consideration to several quantities, we provide
an example illustrating Corollary 2, which specifies bounds on coherent
probabilities for extreme events. Suppose that XI, X2, and X3 are logically
independent quantities with the common realm R.(Xi) = ( 1 , 2, 3, 4, 5), as
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in Example 1. Table 5.2 exhibits the computed upper and lower bounds on
previsions for events of the form Em.K. E (MaxOsksK IXM+k -P(XM.k) I a E)

that would cohere with three different assertion configurations regarding the
quantities X1, X2, and X3. Along any row that begins with a specification of
M,K,E, appear the intervals for P(ErtK,E) coherent with the mere assertions for
all 1,j of P(X1) = 2.2 and P(X12) = 6.0, along with P(XiXi) appropriate to

characterize the specified correlation p(Xi,X)) that heads each column. [When

P(Xi,Xi2) = (2.2,6.0), the correlations p(Xi,Xj) equal to 0, .25, and .75 are

implied, respectively, by the additional assertion of P(XiX)) equal to 4.84, 5.13,
and 5.71.1 In the subsequent row are printed the lower and/or upper bound in
any case for which the coherent bounding interval is restricted further by the
additional assertion of exchangeability regarding X1, X2, and X3. Notice that I.N
additional restriction shrinks the interval further whenever it has any effect.

Table 5.2. Bounds* cn P(EM,k,E) necessary and sufficient for its coherence with
P(Xi,Xj2) = (2.2,6.0) and specified values of p(Xj,Xj), without and with the
assertion of exchangeability for X1, X2, and X3.

p(Xi,Xj)

M.K.E

1,1,0.8
1,1,1.8

1,2,0.8
1,2,1.8

2,1,0.8

2,1,1.8

0.0 .25 .75

[.267 , 1.0 ) 1.267 , 1.0 1 [.267 , 1.0 1

1.025 , .3111 [.025 , .311) [.025 , .288)
.026 .233 .233 .233

[.267 , 1.0 1 [.267 , 1.0 1 [.267 , 1.0 1

1 0 , .3331 [.025 , .3451 [.025 _3181
.026 .233 .233 .233

[.042 , .920) 1.059 , 1.0 1 (.101 , 1.0 1

.088 , .7881 .068 .974
1 0 , .1751 1 0 _2201 1 0 _2581

.121 .158 .230

"The bounds presented are accurate to the nearest one-thousandth
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EA/ample 3. This final example presents computational results
illustrating implications of Part 11 of the Fundamental Theorem of Prevision for
a further conditional prevision. The context for this example continues from
Example 1. Remember that 2.(X) = (1,2,3,4,5), and EE E ( I x P(x) I 2 e). Each

column of Table 5.3 is headed by vector values for an assertion of P(X,X2). Each
row of the table identifies a specific event of the form EE. In the intersection

of each row and column appear the bounds for a further assertion of P(X I Ed if

it is to cohere with the assertion identified by the column heading. These
bounds were computed via the nonlinear programming problems identified in our
Fundamental Theorem of Prevision, Part II. [Notice by the earlier Table 5.1, that
the prevision for each of the events EE listed in Table 5.3 is bounded away from

0 by the requirement that it cohere with the assertions of P(X,X2).1 Figure 4.1,
which appeared in the previous section to illustrate the proof of this part of our
theorem, is drawn to a scale that illustrates this example under the
specifications P(X,X2) = (2.2,6.0) and E = 1.2.

Table 5.3 Bounds* on a conditional prevision P(X I Ed necessary and sufficient

for its coherence with various specified values of P(X) and P(X2).

P(X, X2)

EE

(2.2,6.0) (2.2,7.0)

( I X-2.2 I z 0.8) [ 2.200 , 2.750 1

(IX-2.2k 1.2) [ 1.222 , 2.750 1

(1X-2.2 12 1.8) [ 4.000 5.000 1

[ 2.200 , 2.333

[ 1.857 , 2.333

[ 4.000 , 5.000

1

1

1

(2.2 , 7.6)

[ 2.200 , 2.250

[ 2.059 , 2.250
[ 4.429 , 5.000

*The bounds presented are accurate to the nearest one-thousandth.

Moving beyond these simple computational illustrations, we suggest by
example the vast potential for practical applications. Complex engineering
systems such as nuclear power plants or space vehicles are made up of many
component subsystems, with various dependencies between components, some
providing backups for others via intricate linkages. Typically, the operating
status of the overall system can be represented as a complicated logical
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function of the status of many components. Yet quality testing in the design
and construction of the system usually can be conducted only on a
component-by-component basis. After such testing, engineers may be able to
assert their previsions for the status of individual components under various
conditions, and perhaps even for a few of such components in conjunction. But
it may be difficult for anyone, and even for a team, to assess directly the
operating status of the system as a whole. The linear programming method
underlying the fundamental theorem of prevision can be used to keep a running
track of the bounds on coherent prevision for the stag's of the system implied
by the changing assertions of engineers co kerning the status of components.

A more standard statistical application involve:: conditional prevision
assertions regarding characteristics of a finite population of which some
subgroup has been observed. One application with which we are familiar
concerns the annual milk yields of a group of 27 thousand dairy cows whose
yields are regarded as exchangeable by a dairy expert. An exact yield has been
recorded for some 850 of these cows. Specific assertions made by the expert
about the yields from cows of this type can be inserted as input in the
programming problems to determine the bounds on cohering conditional prevision
assertions about the unobserved yields given the observed yields.

The practitioner may well react with horror at the huge computational
dimension of the programming problems that could be involved in realistic
applications. (Annual yields from individual cows of this particular type can
range realistically from 12 thousand pounds to 40 thousand pounds, so even the
realm of each observation can be immense, depending on the fineness of
resolution in the reported yield.) Two quieting remarks are in order. First,
without elaboration here, let us mention that large reductions in the dimension
of the programming problems can be achieved algebraically by making more
efficient computational use of the exchangeability which has been specified. In
example 2 discussed above, the dimension of the activity vector in our actual
computations was reduced from 125 to 35. Secondly, the computational time for
solving large linear programming problems is reduced from exponential to
polynomial time by the ellipsoid methods of Shor and Khachian (1979), and more
recently, Karmarkar (1984). The survey article by Bland, Goldfarb, and Todd
(1981) and the textbook introduction of Walsh (1985) are helpful. Coupling
these with the benefits of simultaneous processing achieved by supercomputers,
or banks of microcomputers, we feel that even realistically large scale problern5
could be accessible to computation.
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In this tentative happy mood, let us comment on the applicability of
the fundamental theorem of prevision to another sizeable practical problem.
Economists at several institutions regularly produce quarterly forecasts for
macroeconomic measurements of the U.S. economy. Brayton and Mauskopf (1985)
described a recent version of the Federal Reserve Board forecasting model
containing some 332 equations and 124 forecast variables. In conventional
statistical terminology, it is recognized that the large size of such models, and
their many lags and nonlinear ales, preclude the application of simultaneous
estimation techniques. Thus, the many equations are usually estimated singly.
Litterman 0986) and McNees (1986) each noted that forecasters' subjective
judgments are typically appended to model-based computations to produce a
useful forecast. These judgments are based on both an analysis of residuals
from individual equations and on intermediate monthly observations of those
components of the quarterly statistics that are also recorded monthly.
Moreover, applied economists who are knowledgeable of even daily information
on particular sectors such as housing construction, inventories, capital
investment, or capacity utilization can provide a wealth of relevant information
which is not amenable to systematic recording in a prior-formatted data file.
How are all these sources of information to be incorporated into a coherent
prevision assessment for quantities which are of interest for policy decisions?
The fundamental theorem of prevision provides a computational framework in
which judgments based on a variety of information sources can be accumulated
and their coherency checked.

6. CONCLUSIONS

We hope that the substantive statistical results of this paper will
lead you to consider the Fundamental Theorem of Prevision deserving of its
appellation. Our concluding discussion will run in a philosophical vein. We use
both standard logical notation and the arithmetical notation for logical
relations. The latter was eF.L.-::,fished by Boole (1847) and was used by de
Finetti (1967). In arithmetic notation, the sentence (E1 A E2) is expressed as the
product E1E2, and the sentence "1 is expressed ar, (1-E). Thus, for example,

the sentence "E1 implies E2", written in logical notation as '1E1 n E21, is

expressed arithmetically as (1 [E1(1 -E2)1), or (1 -El* EiE2). Such a sentence
can be true or false (the arithmetic quantity can equal 1 or 0) depending on the
truth of the component propositions E1 and E2 (their numerical values).
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That the syllogism is without content has long been a subject of
logicians' musings. An important development in the programme of devising how
the notion of "content" could be integrated into the formal expression of
knowledge was Frege's (1879) distinction between a contemplated sentence,
denoted by E, and an asserted proposition (by you, by someone), denoted by i-E.
Ostensibly, Frege was no friend of the subjectivist stance. Known among
statisticians for his ranting against "psychologism" in the field of logic (Frege,
1893), and perhaps for his provocation of Russell's paradox (Van Heijenoort,
1967), he is unfortunately less well known for the acumen of many of his ideas
(Resnik, 1980). De Finetti, for example (1970, 2.6), mistakenly attributed the
proposed distinction between contemplated and asserted propositions to Koopman
(1940). And Jeffreys (1961, I,S1.51) noted only its use by Whitehead and
Russell (1910). Levy (1980) contains insightful critical discussion.

De Finetti lauded the distinction, however, remarking that we should
recognize prevision as an assertion (by you, by someone). But he declined to use
the assertion notation, supposing that this distinction would be clear from the
context. In two-valued, "deductive", logic, your asserting something about a
sentence such as (El= E2) may take only two possible forms: you may assert
that the sentence is true, 1(1 El + E1E2) = 1; or you may assert that it is
false, I-' (1- E1 + EiE2) = 0. This is the rule of two-valued logic. In the
many-valued logic of coherent prevision, your assertion can take the form
P(1- E1 + EiE2) = a, where this number may be any number in the interval [0,11.
Thus, the syrriL,.: P replaces and expands the assertion symbol 1 of two-valued
logic.-

Frege's distinction allows you to contemplate a sentence without
asserting either that it is true, or that it is false. Indeed, within the confines
of two-valued logic, this is the only weakening possible from the full throated
assertion that a sentence is true or that it is false. The syllogisms of deductive
logic specify equivalence relations among well-formed-formulae within the
logic. The considered formulae are equivalent irrespective of whether or not
anyor asserts the sentences to be either true or false. A person's willingness
to be understood in this logic is signified by accepting the logical law of
noncontradiction, Enr s E (1-E) = 0, along with all its consequences, such as
Evr 5 E+ (1-E) E(1-E) = 1. Thus, within this logic, any assertion regarding
a sentence E that is equivalent to the assertion i-(E v0 = 1 amounts to no
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*ssertion at all about E. It is a redundancy relatve to the person's presumed
willingness to be understood in this logic. To be sure, no one can be forced to
make an assertion about any sentence that is not determined by the principle of
noncontradiction. "ou need neither assert E, I.-E = 1, nor assert ', I- E = 0. In

the extreme, you may find yourself in the non-assertive contemplative position
I- (E v n = 1, an assertion without content. The principle of coherency is merely
the extension of the principle of non-contradiction to the many-valued logic of
uncertain knowledge. As in deductive logic, there is no compulsion that anyone

make an assertion about any quantity. Just asI-(Evt) = 1 is a redundant
"assertion" without content for anyone committed to communication within the
confines of deductive logic, your partial assertion Lhat your

P(X) e [min 31.(X), max R(X)1 is a redundant assertion without content in the
logic of prevision. It amounts to no assertion at all if you accept the principle
of coherency, which is necessary for communication within this logic.

Long a stumbling block to the acceptability of subjective Bayesian
statistical procedures has been the objection "But for many quantities, I am in
no state of mind to assert my prevision. I cannot now assert anything about X."
Subjectivists have annoyedly responded, "Sure you can. It just takes effort on
your part to elicit your prevision. Just try to do the best you can." Shafer
(1976) has spiritedly and repeatedly suggested that the (non)assertion
P(X) e [min 2,(X), max 52,(X)1 is what represents one's knowledge (that is, lack of
knowledge) in sJch instances. Both Shafer's insistence that probability bounds
are not meant to represent betting odds, and his general proposed schema of
inference have drawn appropriate criticism that his probability intervals nave no
operational meaning, and that his schema supports incoherent assessments. [See
for instance the comments of Lindley, of Good, and of Hill in the discussion to
Shafer (1982).1 But Learner's insight (1986) that a pounding statement, such as
P(X) e fait)), could be interpreted operationally as a "bid-ask spread" resolves the
impasse to accepting Shafer's proposal in this instance. In the context of the
Fundamental Theorem of Prevision, this appears to be a beautiful resolution to
the search for a distribution that represents "ignorance", a search which
unfortunately has intrigued many. There is no distribution that can represent
uniquely the assertion of ignorance: P(X) e [min R(X), max R(X)1. It is a
prevision polytope identical to the convex hull of R(X) that represents this lack
of knowledge, this lack of sufficient motivation to assert anything about X.
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Their commitment to the operational-subjective formulation of
probability notwithstanding, both Savage and de Finetti were disconcerted by the
practical problem of identifying one's prevision exactly though expressly no
more than by the prospect of measuring anything exactly (de Finetti, 1970,
Appendix 19.3). Savage recorded his qualifications already in 1954 (Ch. 4).
Together (de Finetti and Savage, 1962) they wrote extensive commentary on the
r °levant article of Smith (1961). And de Finetti's final appendices (1970.
Appendices 14-19) discuss the issues with his customary exhausting brilliance.
One important insight which eluded their analysis was th( understanding of an
operational meaning to a partially asserted prevision polytope.

We submit that the complete extension of our understanding of
representations for all forms of uncertain knowledge, no matter how rich nor
how meagre, is provided by the Fundamental Theorem of Prevision. It supports
the conclusions which we have expressed above. Coherent uncertain knowledge
of a quantity vector is representable by a convex polytope within the convex hull
of the realm of the quantity vector. Central to de Finetti's minimalist approach
to mathematical construction was his rejection of a "preconceived preference
for that which yields a unique and elegant answer even when the exact answer
should be any value lying between these limits'. " (1970, 6.3) The Fundamental
Theorem of Prevision applies the framework of weak mathematical formulations
to the characterization of states of uncertain knowledge by means of an
asserted prevision polytope.
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